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Abstract Cancer i s  currently regarded to be the phenotypic expression of an accumulation of heritable alterations 
in the regulators of cell growth and differentiation. Though detailed knowledge of the sequence and in vivo mechanistic 
effects of these alterations is rudimentary for most, if not all, cancers, their identification does offer the potential for 
classifying groups of individuals who are heterogeneous with respect to their cancer risks, into more nearly homoge- 
neous subgroups. In this paper, we illustrate the value of using markers, which we define as any manifestation of cellular 
molecular diversity, to increase subgroup homogeneity. In the context of time-to-event data, we demonstrate for both 
somatic mutations (acquired p53 abnormalities in gastric mucosal cells) and inherited polymorphisms (polymorphisms 
in the phase 1 and 2 detoxifying enzymes) how knowledge regarding the population frequency of the marker, the effect 
of the marker on the risk of cancer development, and/or the effect of the marker on response to therapy, can be used to 
plan and analyze such trials. Using as paradigms demographic features of the recently begun Shandong precancerous 
gastric lesion intervention trial, and the recently completed cY-tocopherol p-carotene (ATBC) lung cancer prevention 
study, we review the information, assumptions, and mathematical structure required for planning cancer prevention 
trials. We graphically demonstrate how informative markers make available strategies for selection, stratification, and 
optimal weighing, which, when properly implemented, increase the power of tests of effective cancer prevention agents. 
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Randomized trials are generally the pre- 
ferred means for testing the effectiveness of a 
therapeutic intervention. Though no one sug- 
gests that randomized trials do not provide 
equally as convincing an evaluation of cancer 
prevention agents, trials of preventive thera- 
pies occur less frequently than trials of treat- 
ment therapies. One reason for this discrep- 
ancy is the increased size of the experiment 
necessary to achieve a powerful test of a preven- 
tive intervention. Though we examine subse- 
quently in more detail the determinants of 
sample size, for now we observe that the num- 
ber of subjects required for a study and/or the 
duration of the study generally decreases as the 
frequency of the outcome under study increases. 
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It is rare to  find a cancer in which less than 5% 
of untreated persons with the disease show 
signs of progression in a 5-year period. 1 t is rare 
to find a group of cancer-free individuals who 
have a 5-year cumulative incidence of a specific 
cancer as high as 5%. Therefore, even when 
randomized trials of cancer-prevention agents 
focus on high-risk groups, large study popula- 
tions or long study times are required. 

The basic considerations that affect cohort 
design and analysis have been well-established 
for years [1,21. What have undergone and con- 
tinue to undergo dramatic change are the abil- 
ity to characterize the molecular diversity of 
cells, the empirical knowledge of the associa- 
tion of this diversity with progression to malig- 
nancy, and the increasingly detailed hypoth- 
eses one can generate about the steps required 
for the development of a malignant phenotype. 
In this paper we refer to  measurable manifesta- 
tions of cellular molecular diversity as mark- 
ers, and examine how the measurements of 
such markers, coupled with knowledge about 
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their association with cancer, may offer opportuni- 
ties for increasing the efficiency, and hence extend- 
ing the feasibility, of cancer prevention trials. 
Though not required by the mathematical formu- 
lations that underlie the results in this paper, for 
ease of presentation we assume that markers are 
dichotomous, with an individual either being 
marker-positive (MP) or marker-negative (MN) at 
the start of a study. 

The potential use of markers in prevention 
trials is usually divided into two categories: 1) 
the marker serves as a substitute, or surrogate, 
for cancer, and trials study the effect of an 
agent on the marker rather than on the cancer; 
2) the marker is used in the design and analysis 
of studies whose primary endpoint is cancer 
incidence. Using markers as surrogates has 
enormous appeal since changes in marker sta- 
tus typically occur with a much higher inci- 
dence than changes in cancer status. However, 
when the question of relevance is the effect of 
an intervention on cancer and on mortality, and 
not the effect of the intervention on changes in 
marker, deducing how a particular interven- 
tion’s impact on the surrogate translates into 
its impact on cancer incidence requires a de- 
tailed knowledge of the natural history of the 
progression of the marker to cancer in both 
untreated and treated individuals. Direct evi- 
dence bearing on the latter is only available if 
the intervention study has already been done 
and both markers and cancer monitored. Al- 
though generating and testing hypotheses about 
the relations between markers and cancer is an 
important research activity, the accuracy of de- 
ductions about cancer incidence based on 
changes in marker incidence is unknown. 

The focus of this paper is on using markers to  
aid in the design and analysis of prevention 
trials whose endpoint is cancer. To illustrate 
the knowledge required to plan and analyze 
these studies, we will use the demographic fea- 
tures from two studies. The first example is 
drawn from a recently initiated prevention 
study in Shandong, China. This example dem- 
onstrates the impact of sub-categorizing the 
population in terms of somatically acquired dif- 
ferences in marker status. The second example 
is based on the recently completed a-tocopherol 
p-carotene (ATBC) study. Features of this study 
will be used to explore the potential importance 
of genetically inherited polymorphisms. For 
both examples, the primary mode of explication 
will be graphical. Details of the algebraic formu- 

las that underlie these calculations are readily 
available 111. The author will gladly supply 
specifics on how these underling formulations 
are used in any particular calculation. 

QUANTITATIVE CONCEPTS 

We consider trials in which individuals are 
randomly assigned either to a group that re- 
ceives a single active intervention (A11 or a 
single placebo (PL). The primary interest is in 
assessing whether the active intervention pro- 
longs the time a person remains free of a spe- 
cific cancer. Studies which use as their endpoint 
the length of time that individuals are free of 
cancer are referred to as time-to-event (or sur- 
vival) analyses. In terms of data collection, the 
principal difference between a time-to-event 
analysis and the simpler cumulative incidence 
analysis is that the latter only requires counts 
of the number of cancers at the end of the study, 
whereas the former requires information on the 
actual times at  which people develop cancer. 
Though preference for a time-to-event analysis 
may be justified by the increase in power af- 
forded by this additional information, in the 
context of most cancer prevention studies, the 
major benefit of adopting a survival approach is 
that it provides a superior framework for consid- 
ering and displaying the biological consider- 
ations that impact on the design and analysis of 
these studies. 

Evaluating the effectiveness of an interven- 
tion on the cancer-free time of a population 
requires comparing the cancer incidence rates 
of the A1 and PL groups. Though our interest is 
focused entirely on the incidence rates of the 
specific cancer (CAI under study, we must also 
be concerned with the disease rate for the com- 
peting risks (CR). Competing risks are a heter- 
ogeneous category that includes any event 
which occurs before the end of the study and 
removes (censors) a cancer-free individual from 
observation. Though competing risks may arise 
from a variety of causes, we assume that only 
deaths from other diseases (including deaths 
from cancers other than the particular cancer 
under study) can censor an individual. The 
rates of the CA and CR diseases are called 
hazards, and are designated by the symbols 
ACA(U) and AcR(u), respectively. Figure 1 plots 
the mortality rates from cancer and from all 
causes of death for white U.S. males in 1992 [31. 
As one would expect, the hazard (incidence) of 
cancer deaths (and of all deaths) increases with 



Biomarkers in Cancer Prevention Trials 71 

3000 35001 
2500 

2000 

1500 

1000 

500 

0 

-X- Cancer 

35 45 55 65 

Fig. 1. Mortality rate (hazard of death) versus age in US. white males. 

age. A simple model, known to be a reasonable 
fit for cancer hazards in adults [41, is that 
cancer rates increase as a power of age: A (age) = 

b 0 (ageIk. For both cancer (henceforth cancer 
will always mean the specific cancer of interest) 
and competing risks, we assume that this for- 
mula correctly describes the relation between 
hazards and age. For our examples, we esti- 
mate the b and k for the cancer and for the 
competing risk from observations made on rel- 
evant populations (estimation not shown). To 
simplify the presentation, we assume that ev- 
eryone in the study is the same age. The symbol 
ACA(U) indicates the cancer hazard of this age 
person u years after the beginning of the study. 

If the hazards of the CA and CR disease 
processes and their interrelation (we make the 
standard independence assumption [4]) for both 
the A1 and the PL group are known for the 
entire length-T-f the study, the number of 
persons in each group who develop cancer, and 
the number who are alive and cancer-free, is 

known for all times u 5 T. However, even were 
such elaborate knowledge available, an overall 
measure of the effect of the intervention on 
cancer risk would be desirable. One natural 
measure is to  sum the differences in cancer 
hazards at all times u: 

L(T) is a negative number if treatment reduces 
the risk of cancer (AcA(u(AI) < AcA(uPL)); a 
positive number if treatment increases the risk 
of cancer (AcA(ulAI) > AcA(ulPL)); L(T) is equal 
t o  zero if the null hypothesis is true and the 
chance of death from cancer at all times is 
identical in both groups (hcA(ulAI) = AcA(ulPL)). 
Unfortunately, at the completion of a random- 
ized trial, the underlying hazards in the A1 and 
PL group are not known, so L(T) is not a practi- 
cal summary. One intuitive modification of L(T) 
is the log-rank statistic, LR(T). LR(T) is calcu- 
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lated by summing the difference between Oi- 
the number of new cancers observed in the A1 
group at time I-and Ei-the number of the 
new cancers expected to come from the A1 group 
provided that the null hypothesis were true. If 
at each of the D times a cancer develops, we 
keep track of how many cancer-free people are 
in the AI group, and how many are in the PL 
group, then 

D 

LR(T) = C (C, - Ei) 

can be computed from the data [1,4]. Like L(T), 
LR(T) will have its sign and magnitude deter- 
mined by the direction and extent of differences 
between XcA(u/AI) and XCA(ulPL). 

The usual test of an intervention in a time-to- 
event study is obtained by dividing the log-rank 
statistic by an estimate of its variance [1,41. We 
call such a test the log-rank test. The magni- 
tude that the log-rank test must achieve for an 
investigator to conclude that the intervention is 
either beneficial or detrimental is a function of 
the size of the type 1 error level (type 1 error 
levels are described in any introductory statis- 
tics book). In our examples, we choose the 
“usual” two-sided level of .05. The power of an 
intervention study is the probability that the 
study will result in a log-rank test negative 
enough to  conclude that the intervention is 
effective. Examining LR(T), we see that the 
magnitude of this test will depend on the total 
number of cancers (D) and, on average, how 
much smaller Oi is than Ei. This difference 
depends on the relationship between XCA(ulA1) 
and XcA(ulPL). Expressing this relationship in 
terms of a ratio, or relative risk, the smaller the 
intervention relative risk RR-I(u) 

i = l  

the more negative, on average, is Oi-Ei. Adopt- 
ing the standard assumption that the interven- 
tion relative risk is constant over the time pe- 
riod of the study (RR-I(u) = RR-I for all u), a 
simple, accurate, and conceptually useful for- 
mula that relates the underlying hazards and 
the intervention relative risk to  the required 
size of the study, N, is 

1 

(In RR-Il2 Pr [CAI 
N x  (1) 

Here Pr[CA] is the probability that a partici- 
pant will be observed to develop a cancer dur- 
ing the T years of the study. This probability 
depends upon the underlying rates of cancer 
and competing risks. 

SHANDONC: MARKER INFLUENCES DISEASE 
RATE BUT NOT DISEASE RESPONSE 

TO INTERVENTION 

The county of Linqu, China (Shandong Prov- 
ince), has a high rate of stomach cancer and a 
high prevalence of gastric histologic abnormali- 
ties [5,61. These histologic abnormalities have 
been demonstrated, both in Shandong and else- 
where, to be prognostic for the development of 
stomach cancer [6,7]. Since 1989, approxi- 
mately 3,500 members of this population have 
been participating in a cooperative study be- 
tween the NCI and the Beijing Institute for 
Cancer Research. This observational trial in- 
volved endoscopic examination and biopsies of 
gastric mucosa in 1989 and 1994. When classi- 
fied by their most severe lesion, the prevalence 
of the abnormalities in 1989 were 46% gastritis 
(96% of this was chronic atrophic gastritis), 
33% intestinal metaplasia, and 21% dysplasia 
[6]. From preliminary results, we estimate the 
overall rate of cancer to  be 4 per 1,000 person- 
years, with approximate relative risks of 3.5 
and 7 for intestinal metaplasia and dysplasia, 
respectively. The ACR(u) is estimated to be three 
times as large as XCA(u). 

Though predictive of risk, the histologic cat- 
egories based on microscopic morphologic ex- 
amination are thought to result in a classifica- 
tion system which combines biologically 
heterogeneous groups. In particular, the dyspla- 
sias (the large majority of which are mild dyspla- 
sias) probably represent a mixture of lesions 
that differ with regard to both history and des- 
tiny. One population of the mild dysplasias likely 
reverts to  normal appearance and function, 
whereas other populations have acquired irre- 
versible genetic changes. A number of studies 
using a variety of techniques and markers have 
examined the frequency of selected genetic ab- 
normalities in cross-sectional collections of gas- 
tric cancers and their precursors [8,91. Abnor- 
malities of the tumor suppressor gene p53 have 
frequently been found. Though an array of 
markers would probably provide more informa- 
tion than a single marker, for explication we 
focus only on p53. To further simplify, no distinc- 
tion is made with regard to the nature of the 
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p53 abnormality; individuals are classified as 
marker-negative (MN) if they have no detect- 
able p53 abnormality, and marker-positive (MP) 
if they have any detectable p53 abnormality. In 
accord with very preliminary results from a 
small subset of this population [unpublished 
results], we assume that the overall frequency 
of p53 abnormalities is 7.5%, with no MP 
amongst those with gastritis, 10% MP among 
those with intestinal metaplasia, and 20% MP 
among those with dysplasia. 

Our goal is to  demonstrate conditions under 
which characterizing individuals by p53 status 
has a favorable impact on power, sample size, 
and/or study duration. To this end, we compare 
a set of hypothetical Shandong intervention 
studies in which the frequency of MP remains 
set at  7.5%, but the prognostic importance, or 
relative risk, of MP varies. During the time 
course of any given study, this marker relative 
risk, RR-MP(u) = XcA(uJMPYXcA(p\MN), is as- 
sumed to be constant: RR-MP (u)= RR-MP. To 
find a realistic upper bound for the relative 
risk, we pretend that the elevation in relative 
risk associated with dysplasia is entirely due to 
those 20% who are MP-positive. Under this 
assumption, an upper bound is RR-MP = 30. 
For a lower bound we assume the RR-MP = 1: 
that is, p53 abnormalities convey no risk at all. 
Throughout this section we assume that p53 
has no influence on the effect of the interven- 
tion (RR-I). 

One option in using p53 in an intervention 
study would be to screen the population and 
enroll only people who are p53 positive. We call 
such a study a Marker Positive Study and con- 
trast it with an All-comers Study in which par- 
ticipants are not screened. The dashed lines 
(All-comers) and solid lines (Marker Positive) 
in the graphs of Figure 2 show how, for a power 
of 90%, the sample size varies with changes in 
RR-MP. A feature common to both types of 
studies is the decrease in sample size as RR-MP 
increases. For both studies, RR-MP increases 
the probability that a random individual will 
get cancer. Thus, the decreases in sample size 
correspond with the observation that more com- 
mon events require smaller samples. Also antici- 
pated is the increased number of persons re- 
quired when one goes from a 10-year study 
(panel A) to a 5-year study (panel B). Notice 
that, because cancers increase as a power of 
age, a 5-year study requires that we start with 
more than twice the number of individuals than 

a 10-year study. Comparing panel C to panel A 
shows the smaller sample sizes required by a 
more effective intervention. Because seemingly 
small changes in RR-I give rise to large differ- 
ences in sample size, overestimating the benefit 
of an intervention can lead to assembling stud- 
ies with inadequate numbers of participants. 

There are two features of the All-comers curve 
in panel A that could not be anticipated from 
the sample size formula given in the quantita- 
tive section. Though the number of cancers 
increases as the RR-MP increases, the sample 
size of the All-comers study begins to  increase 
rather than decrease at  high RR-MP (RR-MP 
20). The path of the cross-hatched line on Fig- 
ure 2A also indicates that the All-comers study 
is not efficiently using the information gathered 
when RR-MP is large. This line indicates the 
number of MP individuals participating in a 
All-comers study at  each given level of RR-MP. 
When RR-IMP = 25, the cross-hatched line inter- 
sects the solid line: for larger RR-MP, an All- 
comers study requires more MP-positive per- 
sons than a Marker Positive study in order to  
obtain the same power. 

Figure 3 contains a graphical illustration of 
what underlies these inefficiencies. At the start 
of the study, randomization assures that the 
prevalence of MP people is (on average ) identi- 
cal in both treatment groups regardless of the 
risk of the marker (solid line in Fig. 3A ). When 
the marker conveys a risk (RR-MP # 1) and the 
treatment has an effect (RR-I # 11, the preva- 
lence of MP in the two treatment groups does 
not remain equal as the study progresses. Fig- 
ure 3A shows that, under the conditions of the 
Shandong example, an excess of MP people 
accumulate in the AI compared to the PL group. 
This excess becomes greater as RR-MP in- 
creases (both the year-5 and year-10 curves 
slope upward), and as time increases (year-10 
curve is higher than year-5 curve). The accumu- 
lation over time of a larger concentration of 
high-risk (MP) individuals in the A1 group 
causes the relative risk of the cancer incidence 
(RR-I(u)) to change over time. Thus, despite 
the fact that within groups defined by marker 
status the effect of the treatment is constant 
throughout the study (RR-I(u) = .666). Figure 
3B shows that when one ignores marker status, 
the RR-I(u) in an All-comers study becomes 
closer to  1 over time. As can be seen by compar- 
ing the RR-MP = 20 and RR-MP = 30 curves in 
panel B, the larger the RR-MP, the more rapid 
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Fig. 2. Sample size requirements in Al l -comers and  Marker  Positive studies. 

the decrease in the RR-I(u). Graph 2 showed 
the impact that such a decrease in the magni- 
tude of RR-I can have on sample size. 

Figure 4 provides a different illustration of 
the effect of unmeasured heterogeneity. Sup- 
pose we have designed and completed a study 
for Shandong. Based on our prior experience 
with this population, we correctly predicted 
that the 10-year cumulative incidence of gastric 
cancers would be 11%. If the assumed interven- 
tion effect was RR-I = .666, then, in order to  
achieve 90% power, a sample size of N = 2,253 
would have been assembled. Figure 4 graphs 
the actual power that such a study of 2,253 
individuals would have if, instead of arising 
from a homogeneous population, these cancers 
arose from a population that consists of two 
distinct risk groups (7.5% higher-risk MP; 
92.5% low-risk group MN), each of which had a 
RR-I = .666. 

We have offered numerous illustrations of 
the potential impact of heterogeneity, but have 
proposed only one remedy: screen the popula- 
tion at the outset and study the high-risk indi- 

viduals. A variety of considerations might ren- 
der such a plan untenable: there may not be 
enough high-risk persons in a population; offer- 
ing a treatment to only one segment of the 
population may be morally or socially unaccept- 
able; a marker that subdivides a population 
into more nearly homogeneous subgroups may 
only become available after the trial is already 
underway. Fortunately, for the type of heteroge- 
neity we have considered so far, the simple 
strategy of analyzing the data separately within 
marker groups, and then combining the re- 
sults, negates the inefficiencies that arise from 
analyzing all the subjects together. This ana- 
lytic strategy, called a stratified log-rank test 
[2], is implemented by summing the log-rank 
statistic from each group, summing the vari- 
ances in each group, and dividing the former by 
the latter. The line marked with circles in Fig- 
ure 2A shows the sample sizes required for 90% 
power in an All-comers study analyzed by the 
stratified log-rank test. Notice that in contrast 
to the standard log-rank analysis of the All- 
comers study (dashed line), the stratified analy- 
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A: Ratio of MP prevalence versus marker relative risk. B: Intervention relative risk (AI/PL) versus time for 

sis no longer has the upturn in sample size 
requirement when RR-MP > 20. If, as in panel 
A of Figure 2, the number of MP persons in a 
All-comers were plotted, this line would always 
be lower than the sample size line for a Marker 
Positive study. 

THE ATBC LUNG CANCER STUDY: MARKERS 
INFLUENCE DISEASE RATE AND DISEASE 

RESPONSE T O  INTERVENTION 

The Finnish ATBC study [lo] provides a 
framework for examining trials in which marker 
status affects not only the underlying disease 
rate, but also the response to treatment. The 
ATBC study was a prevention trial of 29,133 
male smokers, median age 56. Participants were 
randomized to receive vitamin E, p-carotene, or 
placebo (2 X 2 design). The study was designed 
to be of sufficient size to  have 85% power to 
detect a 19% decrease in lung cancer (RR-I = 
.8l>. Despite exceeding the predicted number of 
cancers (876 lung cancers were observed) over 

the 6 years of follow-up i l l ] ,  the study failed to 
find a beneficial effect of either vitamin E or 
p-carotene on lung cancer. We examine whether, 
in a study such as this, the power to  detect a 
true beneficial treatment effect of antioxidant 
therapy might be appreciably diminished by 
measurable heterogeneity. For simplicity, we 
assume the intervention consists of only one 
active antioxidant agent, or one combination of 
antioxidant agents. 

The source of heterogeneity is a germ cell 
inherited polymorphism that occurs in GSTM1. 
GSTMl is a phase 2 detoxification enzyme 
thought to function in the disposition of several 
carcinogens, including aromatic hydrocarbons 
in tobacco smoke [121. Because of a homozygous 
deletion [13], approximately 44% of the Finnish 
populations lacks GSTMl activity [141. We des- 
ignate such persons, often referred to as having 
the GSTMl null phenotype, as marker-positive 
(MP). Though observational studies of lung can- 
cer have differed with respect to  the risk con- 
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veyed by the GSTMl null phenotype, a Finnish 
case-control study of smokers estimated that 
GSTMl null phenotype increases lung cancer 
risk by a factor of 2 (RR-MP = 2) [14]. This is 
the estimate of marker risk used in the follow- 
ing examples. 

GSTMl catalyzes the detoxification of electro- 
philic substances by conjugation with reduced 
glutathione. Since the primary mechanism of 
action of the antioxidants is thought to  be the 
reduction of these same substances, the antioxi- 
dants can be imagined to  function at least as 
partial “replacement” therapy in MP individu- 
als. Thus, these agents may have greater effect 
in the MP than the MN individuals. As usual, 
the effect of an intervention is given in terms of 
relative risks. We designate the different re- 
sponses to  treatment in the MP and MN groups 
as RR-IMp and RR-IMN, respectively. 

Figure 5 shows the sample sizes required 
(power = 85%) for each of 3 sets of different 
intervention relative risks when either the se- 
lection of participants varies (MP versus All- 

comers), or the analysis of the All-comers study 
varies. All calculations have XCA(u) and XCR(u) 
chosen so that the All-comers studies duplicate 
the observed lung cancer incidence and the 
observed non-lung cancer deaths (the compet- 
ing risks) of the ATBC study. One extreme is 
represented in Figure 5, where RR-IMp = .5 and 
RR-IMN = 1: this corresponds to the antioxidant 
therapy completely reversing the risk conveyed 
by the MP phenotype but having no effect on 
the MN phenotype. Under this scenario, the 
size of the ATBC study (30,000 persons) would 
have been more than adequate: only 8,500 
people are required for 85% power using a log- 
rank analysis in an All-comer study. For an- 
other extreme, we keep RR-I MN = 1, but set 
RR-I MP= .81: the level of effectiveness is equal 
to the minimum thought by the investigators to  
be of public health importance [ll], but the 
treatment benefit is entirely restricted to the 
MP persons. Eighty thousand persons would be 
required for a power of 85%. In the third set of 
bar graphs (Fig. 51, the total reduction in popu- 
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lation that lung cancer risk achieved by the 
intervention is the 19% specified by the investi- 
gators, but the benefit is greater in the MP 
(RR-I,, = .70) than the MN (RR-IMp = .90) 
individuals. 

Notice that the required sample sizes for the 
MP studies are considerably less than 44% of 
the required sample size of the All-comers study. 
Again, this indicates that when one knows 
marker status, the log-rank test is an ineffi- 
cient use of the collected information. Here, 
however, by comparing the appropriate bars in 
Figure 5, we see that, unlike in the Shandong 
paradigm, the stratified log-rank aids mini- 
mally in the reduction of sample size. When the 
intervention has no effect on the hazards of the 
MN people (RR-IMN = l), the sum of the Oi-Ei in 
this stratum will be, on the average, zero. How- 
ever, the variance of this sum will be greater 
than zero. Thus, if RR-IMN = 1, the contribution 
of the MN people to  the stratified analysis is to 
add “noise” but no “signal”; the data are more 
informative if the records of the MN individuals 

are discarded and the analysis restricted to the 
MP people. This is exactly what is done by the 
“optimally weighted log-rank test. Optimally 
weighted means that, instead of simply adding 
together the contributions from each stratum, 
the contributions are multiplied by a “weight” 
proportional to  the log RR-I in each stratum 
[l]. This returns us to  the “efficient ‘‘ situation 
where the size of the Marker Positive study 
equals 44% of the size of the All-Comers study. 

A final example illustrates how marker- 
derived information on biologic heterogeneity 
may explain disparate results that arise from 
identical experiments in two different loca- 
tions. The frequency of genetic polymorphisms 
may vary by population. In Japan, though the 
GSTMl null phenotype has a prevalence ap- 
proximately equal to that in Finland, tho preva- 
lence of the homozygous m2 CYPlAl pheno- 
type differs: 11% of Japanese and 2% of Finns 
are homozygous for this RFLP [15,161. C:YF’lAl 
is a phase 1 detoxification enzyme. One of its 
functions is to  activate aromatic hydrocarbons 
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to an oxidized state prior to  their reduction and 
conjugation by phase 2 enzymes. Japanese indi- 
viduals who are both GSTMl null and CYPlAl 
m2 homozygous have been found to have a 
relative risk of lung cancer of approximately 10 
(RR-MP = 10) [XI.  Defining the marker- 
positive state to  be the joint presence of both 
these polymorphisms, and assuming indepen- 
dent segregation, Figure 6 shows the variation 
in sample sizes between a Finnish and a Japa- 
nese study in the presence of identical interven- 
tions, identical All-comers cancer incidence, and 
identical within subgroup intervention effects 
(RR-IMp = 5; RR-IMN = .9). Equivalently, the 
point-estimates derived from any analyses of 
the overall (not stratum-specific) benefit of anti- 
oxidant therapy in the two different countries 
would be discrepant. 

DISCUSSION 

The accuracy of the standard formulae for 
calculating sample size requirements, and the 
efficiency of the usual log-rank test, are predi- 
cated upon the assumption that the cancers 
arise from a population which is homogeneous 

with respect to  both the underlying cancer rate 
and the magnitude of the intervention effect. 
Using the known features of two cancer preven- 
tion studies, we have constructed examples to 
illustrate the consequences that occur when the 
homogeneity assumptions are false. For fixed- 
marker prevalence, we have shown that the 
impact on design and analysis are dependent 
on the biologic repercussions of the heterogene- 
ity. In the Shandong example, the loss of effi- 
ciency incurred by employing the usual log- 
rank analysis rather than the stratified analysis 
(Fig. 2A), and the attenuation of power based 
on the standard sample size calculations (Fig. 
41, are small for RR-MP <5 and large for 
RR-MP >lo .  Similarly, in the ATBC example, 
the benefit conveyed by using the optimally 
weighted log-rank test, rather than the usual 
log-rank test, depends on the extent of the 
difference between the marker-defined group’s 
response to treatment. 

Some important marker-related issues have 
not been explored in this paper. How should one 
incorporate uncertainty about marker effect into 
sample size calculations? Might the measure- 
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ment of markers of risk influence individuals’ 
compliance with their assigned treatment and 
affect power in unexpected ways [17,181? Must 
“optimal weights” be assigned before the study 
solely on the basis of a priori beliefs, or can the 
data be used to estimate weights that are 
adapted to  the nested structure of the log-rank 
test? If, in the interest of studying groups with 
high cancer rates, we select marker-positive 
individuals, might we also be selecting a subset 
too far along the pathway to cancer to benefit 
maximally from the intervention? These compli- 
cated issues require considerations particular 
to  each population, disease, and intervention 
under study. 

Most cancers are best regarded as the later 
stage of a disease process rather than as the 
early stage of a disease. Current evidence sug- 
gests that what drives the phenotypic progres- 
sion toward malignant behavior is the accumu- 
lation of genotypic alterations in dividing cells. 
Though it is likely that some of the key abnor- 
malities responsible for the transformation to 
cancer have been identified, the information we 
possess on the sequence, timing, and interac- 
tion of these aberrancies, and on the future 
history of cells at any premalignant stage in the 
process, is rudimentary. Nonetheless, it is im- 
portant that randomized cancer prevention tri- 
als, as well as observational studies of progres- 
sion to malignancy, measure and apply the 
current markers in a manner that is as biologi- 
cally and statistically coherent as knowledge 
and knowledgeable hypotheses permit. Hope- 
fully, this will result in immediate gains in 
terms of more efficient identification of cancer 
preventive agents. It will probably result in 
increased information on the dynamics of the 
progression t o  cancer. Ultimately, it  is in- 
creased understanding that will permit more 
rational design and application of cancer pre- 
vention strategies, and better focus and more 
power in the clinical trials required for their 
evaluation. 
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